(10x-4)+(x^2+4)=180

Simple and best practice solution for (10x-4)+(x^2+4)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10x-4)+(x^2+4)=180 equation:



(10x-4)+(x^2+4)=180
We move all terms to the left:
(10x-4)+(x^2+4)-(180)=0
We get rid of parentheses
x^2+10x-4+4-180=0
We add all the numbers together, and all the variables
x^2+10x-180=0
a = 1; b = 10; c = -180;
Δ = b2-4ac
Δ = 102-4·1·(-180)
Δ = 820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{820}=\sqrt{4*205}=\sqrt{4}*\sqrt{205}=2\sqrt{205}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{205}}{2*1}=\frac{-10-2\sqrt{205}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{205}}{2*1}=\frac{-10+2\sqrt{205}}{2} $

See similar equations:

| 5=r15 | | m/4-7=1- | | 5-2(x+3)=21 | | -1-22n=-20n-5 | | 4x+1=6x-25 | | -45=x+47 | | 50+15x=95+12 | | 6(x+4)+2x-2=-34 | | 0=y-88 | | 12n+1=20-7n | | 37=-3-+5(x+6) | | 3(x+5)=5x-1 | | 2(5x+8)=-36+22 | | 8y-3=16-(1-2) | | 8r-7=79 | | 4(x+3)+4x=6x+10+2x | | 4p-5=3p+8 | | (1/4)a+2=-6 | | 4(2x-32)=8(x-8) | | 8b+6(b+3)=116 | | -10g-20=3g+20-17g | | 4x-8x-13=-4x+4-13 | | s/9=83=-74 | | -3|r+4|=-21 | | -7+6x=-14 | | 2x+8-8=3x+6 | | 140+0.2x=50+0.5x | | -63/4m=4 | | 4z-5=10z+7 | | (2/8)+(3/4)=(w/5) | | 2n+(-4)=4+-8 | | 3(x-6)=-2x-13 |

Equations solver categories